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SUMMARY
A cumulative distribution function F is said to stochastically dominate another distribution

function G in the second-order sense if J:r F(t) dt < J: G(t) dt, forall x with strict

inequality for some x. It is desired to test the null hypothesis Hy: F=G versus H,: F
stochastically dominates G in the second-order sense. The aim of this paper is to develop a
test, which is sensitive to this one-sided alternative. A test based on the empirical
distribution functions is proposed and its asymptotic null distribution derived, making this

test procedure useful'in large samples.
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1. Introduction

In economics, finance as well as in statistics, stochastic dominance theory
has become an important tool in the analysis of choice under uncertainty.
Given two random prospects X and Y with Cumulative Distribution Functions
(CDF’s) F and G respectively, both defined on the whole real line, we would

like to define an order of preference between F and G. Assume every



individual has von Neumann-Morgenstern utility function u(x) and ranks
random prospects by his/her expected utility, E, [u(X)]. Let U, fori=1,2

denote utility function classes, where

() U,={u g—u(x)z 0Vx)

(i) U,= { u: %u(x)z 0, —;:%u(x) <0 Vx).

U, is an extremely large class containing practically all acceptable utility
functions. Utility functions in U,exhibit decreasing marginal utility, and
individuals having these utility functions are called “risk-averse”. Although
some individuals may be risk-seekers, firms, governments and most people are
generally more conservative , and we would expect the utility function they
employ, to belong to the class U,.

Two types of Stochastic Dominance (hereafter SD) are commonly
used: First-order SD (FSD) and Second-order SD (SSD).

(i) F stochastically dominates G in the first order if and only if
E;[uX)] =2 Eg[u(Y)] foralluinU,.

(ii) F stochastically dominates G in the second order if and only if

E;[uX)] 2 Eg[u(Y)] forall uinU,.

FSD and SSD have convenient characterizations in terms of the distribution
functions of the prospects given by the following result (cf. Hadar and Russell
(1969) and Hanoch and Levy (1969)):

(i) F(x) < G(x), for all x with strict inequality for some X iff
E, [u(X)] = Eg[u(Y)] forall uinU.




(ii) L: F(t)dt < J.OX G(t) dt, for all x with strict inequality for some x iff

E, [u(X)] 2 Eq[u(Y)] foralluin U,.

This result is the key to stochastic dominance. Suppose X dominates Y in the
sense of SSD. Then no risk-averse individual would ever choose Y, because
the expected utility of X is greater than the expected utility of Y for all risk-
averse utility functions. Clearly in order that a well-defined answer exist to

the question whether
E. [uX)] 2 E;[u(Y)] foralluin U,,=1,2

for any pair of distribution functions, a summary measure is needed. One can
then at least order the measures for the two random prospects to decide which
one provides larger utility. So the problem of comparing and choosing
between two random prospects X and Y, is equivalent to testing for FSD in
case of utility functions belonging to the class U, and to testing for SSD in
case of utility functions belonging to the class U,. If F dominates G in the
first order then F also dominates G in the second order but the converse is not
always true. Our interest is focused on the SSD.

Section 2 presents a test statistic, Ty , based on the empirical CDF.

We obtain the asymptotic distribution of this statistic Ty, under the nuil

hypothesis. In section 3, a method of estimating this asymptotic variance is

provided so that the test can be put to practical use.

2. Testing For SSD Based on the Empirical CDF

There is considerable literature and adequate statistical theory for
testing for FSD. Several nonparametric procedures have aiso been developed
(see e.g. Whitmore and Findlay (1978), McFadden (1989) and the references

contained there). For the case of SSD, however, there do not appear to be any
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satisfactory tests. Deshpande and Singh (1985) developed a one sample test

for testing
Vversus
H, : F stochastically dominates F, in the second order sense,

where F, is a fully specified and known CDF. They define

Dy, = [ [ (F®-Fy () dt dF, (x)

and base their test on the sample version of Dy , given by

D,=[ | (F,®-F, ()dtdF, (),

where F, (x) is the empirical CDF. They showed that the standardized
version of D, is asymptotically normally distributed. McFadden (1989)

proposes a test for testing SSD
H,: jo" F(y)dy < jo" G(y)dy forall win [0, 1]
Versus

H,: jow F(y)dy > Iow G(y)dy for some win [0, 1].
His test statistic is the sample analog
L S = % I“. {G .
S =Max S, (w), we[0, 1], where wW)=n"2 | {G () - F (y)} dy.

However, the asymptotic distribution of S, under Hy is not fully known

Furthermore, he assumes equal sample sizes from the two populations. See
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!
also Kaur et al (1994) for a more satisfactory approach analogous to ours.

Our interest is focused on developing test procedures for the two
sample SSD problem which do not rely on parametric assumption. Let

X,, --» X, and Y;, ..., Y denote random samples from continuous CDFs F

and G, respectively. Here we will consider the problem of testing

H,:F=G
Versus
H, : F dominates G by SSD

on the basis of the two observed samples X,,....,X,and Y,,.., Y, . If F (1)

and G, (t) denote the empirical distribution functions of these two samples
respectively, then a test procedure which rejects H if f { G, (t)- F, (t))dt

is large, has some intuitive appeal but this depends on the value x. Let w(x) be
some pre-assigned non-negative weight function to be chosen by the
statistician so as to weight the deviations according to the importance attached
to various portions of the distribution function or taken to be a constant if there

is no preferential weighting which makes sense. We now introduce the statistic

e =\/%f; wx) { (G0 F,1)dt} dHy (),

where Hy (x) = (WN)F, (x) + (m/N)G , (x), xin R, and N=n+m. We
assume that there exists a limit p, 0<p <1, such that
n/N—> p as N— «.
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The normalizing factor (nm/ N)"* is included to produce proper non-

degenerate asymptotic distributions under H,. Define

Dy()=wx) [ (G- F,1)dt.



For x>0, D, (x) is a weighted measure of the deviation from H, toward H,.
and T, is an average value of this deviation. It is important to note that

stochastic ordering corresponds to one-sided alternative and certainly any test

procedure should be sensttive to this alternative.
Using the probability integral transformation U, = F(X;), and
vV, =F(Y)), define

B,(w= "3 ((U, <w-u), and B,@)=m"?3 ((V,<u)-u)

i=1 Jj=1

By (u) = \/% B_ (u)- \/%Bn(u), 0<u<l.

Then we have

and

Ty = ) wis) {f] (B (ufCF™ ))) du) ds.

Note that each of B, and B, converges weakly to a Brownian bridge By, and
B,, respectively. Also since B, and B,, are independent, so are B, and
B,,. Therefore, By, being a linear function of B, and B,,, we have the result

that
B, —2[p By, - {1-p By, = By, say

as N— oo It follows that if BN={BN(u):03usl},then
B, ——> B, asN— .

Theorem 2.1. Under H,, asN—> o, Ty, hasa limiting N(0, &%)

distribution, where o is given by




nd

it

1 pl 1 ps 1 | ]
a" = oJ, W L) ey Ty i e dud st )

For the proof of Theorem 2.1 we require the following Lemmas.

Lemma 2.2, As N> oo,

[ (B (uyf( F™ (u) du—2 [} (By(uyf(F™ (w)) du, 0<s<l.
Proof. To prove that

[} (By yRF™ (W) du—2 [ (By (w/R(F™ (W) du,
for every fixed s, 0<s<1, it is sufficient to show that the mapping

h(By (W)= [ {By (u/f( F~' (w))}du
is (a.e.) continuous in the Skorohod metric (say ds), so that the result follows
by the continuous mapping theorem (cf. Billingsley(1968) p.30). First,
because of the assumptions on f and F, f( ™' (u)) is continuous for 0<u<1. It

is then easy to show that g (u)= B, (u)/f{ F~' (u)), when regarded as a

function of B (u), is continuous in d; so that

g, (u)—>— g(u) = B, (W/(F™ (w).

The result

E (By (u/f( F' (u))) du—2— j:(Bo(u)/f(F"(u)))du, 0<s<1



will then follow if we show that jo g(u)du, as a functional of g(*), is

continuous in d,.
Now for any sequence of functions g, converging to g in d; there

exist functions 4, such that lim g, (4, (u)) = g(u) uniformly inu and
/1(1_{2 A (1) =u uniformly in u (Skorohod topology: see Billingsley(1968) for

details). Since every element of D is bounded and has at most a countable

number of discontinuities, it is Riemann integrable.
Let P:0<u < .. <u,<sand P, :0<A,(¢)<..<4; () <

be two sequences of partions such that Ph is for I ’ g(u) du and Ph' is for
. 0

j: g, (u)du. Ask— oo the upper and lower sums for the latter integral

converge to those for the former. Therefore it follows that

IOS g (u)du — J: g(u) du, 0<s<1

and that J: g(u) du is continuous in d;.
Lemma23. As N —» o,

) W[ (B @YRF™ (w)du}ds

25 [0 wis) { ] (Bo(uV/f(F™ (w)) du} ds

for any pre-assigned nonnegative function, w(s), 0 <s<1.

Proof. By Lemma 2.2,

[} (By(uym s ) du—"— [ (By /A () du
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as N — . Let Dy be the set of discontinuities of Jos (B, (u)/f( F~' (u))) du.

Since X and w are independent with X being continuous, Dy Dy, =& and

P{(Dr" Dy)# &} = 0. Thus, multiplication on DxD, defined by
w({ [ (B (uVECF™ (w)) du}s) = w(s) { [ (Bo(uyf( £~ (u))) du}, 0521,

is measurable on DxD and continuous at those J: (B, (w/f( F~* (u))) du, w for

which DyD,, =@ (cf. Whitt (1980) p.79). Thus

ws){ [ (By (u/fF~ W))du} —E— w(s){ [} (B (uV/A(F™ (W) du)
ands hence

f; w(s){ I; ( By (u/f( F~* (u)))du}ds

— Ll w(s) { IOS (B, (u)/f( F~' (u))) du} ds

will then follow from the continuity of the integral operation in conjunction

with the continuous mapping theorem.

Lemma 2.4. Let w(s), 0<s<1, be a deterministic piecewise continuous

function. Then the stochastic integral
1 s
[ wis) ([ (Bo(uy/fC < (w) du} ds

exists in the sense of convergence in mean square and has a N(0, a?)

distribution, where o is given by (1).

Proof. As a first step, define the stochastic integral



[} (B (u¥fC <~ (u) du,

where { B, (u); 0<u<1} is a Brownian bridge. B, (u) is a Gaussian process

whose mean value function and covariance kernel are given by
EBy(u)=0, and Cov(B,(u), B,(v)) = min(u, v) - uv.

These are continuous functions of uand v as is 1/f( F ' (u)). Let

0= Uy <u, <.<u, =s

such that

lim max U, -u =0
proo 1Sksp ( pk-l ) )

We form the “Riemann sums”

2 By(u,,)
S = ——p( —u '_),
! ,;f(F H(U,4)) .
while
5 By(u,,)By (v, ;)
SS = L 49.J (u o \
o ZZ FE N E @) ket Vs =Yg )
where u,, , <u,, <u,, and Vs SV . Then

mm(upﬁ’ au) M V. _ - -
BUS,50) = 2. 2 T 0P 03) )“‘”-" Uit ¥y =y ).

and we obtain
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. o [ min(U,V)‘"v dudv
Jim E(S,8,)= L G T

This limit is the same for all sequence of subdivisions and all choices of the
intermediate points. Now appealing to Loeve’s Theorem 6.1.5 (1963, p.469),
we see that the “Riemann sum” Sp converges in mean square. It follows from

the fact that the Brownian bridge is a Gaussian process that

J, (Bo(u/f(F™ (u))) du

is also a Gaussian. Its distribution is characterized by the mean value and

covariance function, which are given by
E([} (By(u/R(F™ @) du)= [ EB,(u)du=0, forallu
and

k(s, t) = Cov[ jo (B, (u/R F~' (w))) du, jo' (B, (uy/f( F~* (u))) du]

s 1 1 ) _
iy Io Io f(F"(u)) f(F"l(v)) [min(u, v) — uv]dudv (2)

In a similar way, the integral
1 el
L L w(s)w(t)k(s, t) ds dt

exists since w(s) is a piecewise continuous function on I={0, 1] and also k(s, t)

is continuous on /?. Thus the integral

[ wis) ¢ [} (By (¥R F~' () du} ds

is well defined as a limit in mean square of the usual approximating sums. It
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can be shown that this integral defines a random variable. Since the

approximating sum of this integral is the sum of independently and normally

distributed random variables, we see that

1 s
Jo W] By () du ds
is also normally distributed. Moreover it is easily seen that

ELf, W J] (B, /i7" (w)))du}ds]

B ﬂ W(S)E(I: (B, (w/f( F™' (u)))du) = 0
while

Var[ I; w(s) {L (B, (w/f( F~' (u))) du} ds] = J'O'J'O' w(s)W(t)k(s, t) ds dt,

where k(s, t) is given by (2).

Proof of Theorem 2.1. Following Lemmas 2.2 and 2.3, it would then be

sufficient to show that

[} W[} (By (V™ (w)) du} d(Hy ($)-5)

converges to zero in probability when N— o, /N— p,0<p<1. The proof

is analogous to that of Corollary 5.6.4, Csorgo and Revesz(1981), with their
B, () replaced by our

[} (ByVCF™ (W) du
Thus, as N— oo, we have
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Iof

Ir

fy W) ([} (By VR F™ () dudH (5

AN jo' w(s) { [ (Bo(u/fF™ () du} ds.

3. Variance Estimator

In order to make full use of Theorem 2.1 in problems of inference,

one needs to estimate o. In this context, the jackknifing turns out to be very
useful. Let

L= [ J@)F, () dy,
where
J(u) = 1[0, p)(u), 0<p<1. 3)

and let L, be the L-statistic based on (X,, ..., X,,,X..,, ..., X,) (i.e., ona

sample size n-1 when X; has been removed from the original sample). Then,

the ordinary jackknife L_(p) may be written as

n

L:l . nhlanJ >

i=1

where

L,=nL, (p)-@-1)LP i=1,..n
Also, the jackknife variance estimator of L (p) is defined by

Sj = (n_ 1)—IZ(Ln_I - L:l)z .
i=
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Parr and Schucany (1982) proved that for L, (p) with “smooth” J,
S? 5 o*(J,F)

with probability one, where
20,0 = [ [ Juiwimin(u,v)-uv} dF* (u) dF (v)

Since the derivative of J exists and is continuous on the unit interval except
that the derivative of J fails to exist at the single point p, Theorem 2 of Parr
and Schucany(1982) applies. Let

SpSi = (=072 Y (L, ~ L)L, - L),

i=l j=1

sz = [, wpyw(a) 5,,5,, dpda,

and S be the corresponding quantity of S, for the second sample of Y;’s.

Define

§z = 1o, lg

n m:
n

. . : N .
We shall now establish the consistency of S}, , the estimator of — o’ using
nm

the above result of Parr and Schucany (1982) and the continuous mapping

theorem.

Theorem 3.1. Under H,, nm/N)Sy — 0 ¢ with probability one, where the
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score function J is given by (3).

Proof. Since S2— o?(J, F) with probability one, it is obvious that S,,S,,
converges to

jo” j;’ {min(u, v) -uv} dF* (u) dF" (v)
with probability one. Then, by the continuity of the integration operator,

sz [} wew@ [ 7 {min(u,v)- uv) dF* () dF" (v) dpdg

82— [} wow@ [ {min(u, v)-uv} d G (5) 4G (v) dpdg

with probability one.. Thus, under H,, (nm/N) S3 — o with probability

one.

Therefore we can use this jackknife estimator of o and Slutsky’s

theorem to conclude

T/ (nm/ N)2S, —N(0,1)

which is a useful result that can be used in practice when dealing with large

samples.
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